References

Clegg, W. (1981). Acta Cryst. A37, 22-28.

- Groth, U., Eckenberg, P. & Huhn, T. (1993). GIT Fachz. Lab. pp. 892-895.
- Huhn, T. (1994). PhD thesis, Univ. of Göttingen, Germany.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1994). SHELXTL-Plus. Release 5.01. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Stoe & Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.
- Stoe & Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (1995). C51, 2147-2148

2-Hydroxymethyl-1-pentylbenzimidazole Hemi(1,4-dioxane) Solvate

ANDRÉ AUBRY

Laboratoire de Minéralogie, Cristallographie et Physique Infrarouge, URA-CNRS 809, University de Nancy I, BP 239, 54506 Vandoeuvre-lès-Nancy CEDEX, France

ALAIN BREMBILLA, VALÉRIE FAIVRE AND PIERRE LOCHON

Laboratoire de Chimie-Physique Macromoléculaire, ENSIC, INPL, URA-CNRS 494, 1 Rue Grandville, BP 451, 54001 Nancy CEDEX, France

(Received 8 February 1995; accepted 18 May 1995)

Abstract

2-Hydroxymethyl-1-pentylbenzimidazole serves as a simple model for the active site of hydrolytic metalloenzymes. The crystal structure shows that this compound crystallizes with 1,4-dioxane molecules: two benzimidazole units for one solvent molecule, $C_{13}H_{18}N_2O.0.5C_4H_8O_2$. The benzimidazole rings are hydrogen bonded (O—H···N) into dimers.

Comment

2-Hydroxymethyl-1-pentylbenzimidazole was found to be active under its complexed form in the transesterification reaction of co-complexing activated esters (*e.g.* 4-nitrophenyl-5-alkoxypicolinic esters; Faivre, 1993) in cetyltrimethylammonium bromide (CTAB) micellar solutions. Indeed, this compound is capable, through its chelating sites, of forming active complexes with bivalent metal ions (*e.g.* Zn^{2+}) in the presence of non-ionic or cationic surfactants. Unlike the 5(6)-alkylchain substituted homologues which give, whatever the surfactant concentration, an active complex with only a 2/1 stoichiometry, 2-hydroxymethyl-1-pentylbenzimidazole forms two active bidentate complexes simultaneously with 1/1 and 2/1 stoichiometry types at low surfactant concentrations (slightly above the cmc). At higher surfactant concentrations, these complexes evolve to only an active 2/1 complex type (Faivre, Brembilla, Roizard & Lochon, 1991). Therefore, the interpretation of the complexation mode as a function of the surfactant concentration initially prompted us to determine the crystal structure of this ligand (I) by X-ray crystallography.

The experimental intramolecular parameters (bond lengths and angles) of the heterocyclic ring are in good agreement with those determined for the non-substituted 2-hydroxymethylbenzimidazole (Aubry, Brembilla, Faivre & Lochon, 1995).

Fig. 1. ORTEP (Johnson, 1965) drawing of the title molecule with the atom-numbering scheme. Ellipsoids are plotted at the 50% probability level.

-0.1919(2)

The examination of the intermolecular distances C(4)shows that the molecules are associated as dimers by means of hydrogen bonds with an $O(1) \cdots N(1)$ distance of 2.813 (2) Å [symmetry code: -x, -y, -z] and $O(1) - H \cdots N(1) = 164$ (2)°. The aliphatic chain on the N atom is fully extended with an average torsion angle of 177 (1)°.

Experimental

Crystals of the title compound were obtained by recrystallization from dioxane.

Crystal data

C13H18N2O.0.5C4H8O2 Cu $K\alpha$ radiation $M_r = 262.35$ $\lambda = 1.5418 \text{ Å}$ Monoclinic Cell parameters from 25 reflections $P2_1/c$ $\theta = 20 - 30^{\circ}$ a = 12.801(1) Å $\mu = 0.547 \text{ mm}^{-1}$ b = 7.819(1) Å T = 293 Kc = 15.169(2) Å Needle $\beta = 101.08(1)^{\circ}$ $0.6 \times 0.1 \times 0.1 \text{ mm}$ $V = 1490 \text{ Å}^3$ Colourless Z = 4 $D_x = 1.17 \text{ Mg m}^{-3}$

Data collection

Enraf–Nonius CAD-4	$\theta_{\rm max} = 70^{\circ}$
diffractometer	$h = -15 \rightarrow 15$
$\omega/2\theta$ scans	$k = 0 \rightarrow 9$
Absorption correction:	$l = 0 \rightarrow 18$
none	2 standard reflections
2834 measured reflections	frequency: 120 min
2664 independent reflections	intensity decay: none
2355 observed reflections	

 $[I \geq 3\sigma(I)]$

 $(\Delta/\sigma)_{\rm max} = 0.4$ Refinement on FR = 0.044(on heavy atoms) $\Delta \rho_{\text{max}} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = 0.22 \text{ e } \text{\AA}^{-3}$ wR = 0.046S = 4.342355 reflections Extinction correction: SHELX90 (Sheldrick, 261 parameters 1990) All H-atom parameters Extinction coefficient: 0.032 refined $w = 25.18/[\sigma^2(F)]$ Atomic scattering factors $+ 0.00004F^{2}$] from SHELX90

Table	1.	Fractional	atomic	coordinates	and	equivalent
		isotropic dis	splacem	ent paramete	ers (Å	x ²)

$$B_{\rm eq} = (4/3) \sum_i \sum_j \beta_{ij} \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	Ζ	B_{eq}
-0.0565 (1)	0.2249 (2)	-0.0425 (9)	3.87 (3)
0.0790(1)	0.3866 (2)	-0.0682 (9)	3.67 (3)
0.1805(1)	0.0730(2)	0.0465 (9)	5.06 (3)
-0.0036(1)	0.4119 (2)	-0.1405(1)	3.67 (4)
-0.0116 (2)	0.5099 (2)	-0.2181 (1)	4.67 (4)
-0.1069 (2)	0.5027 (3)	-0.2777 (1)	5.28 (5)
	x -0.0565 (1) 0.0790 (1) 0.1805 (1) -0.0036 (1) -0.0116 (2) -0.1069 (2)	$\begin{array}{cccc} x & y \\ -0.0565 (1) & 0.2249 (2) \\ 0.0790 (1) & 0.3866 (2) \\ 0.1805 (1) & 0.0730 (2) \\ -0.0036 (1) & 0.4119 (2) \\ -0.0116 (2) & 0.5099 (2) \\ -0.1069 (2) & 0.5027 (3) \end{array}$	$\begin{array}{ccccc} x & y & z \\ -0.0565 (1) & 0.2249 (2) & -0.0425 (9) \\ 0.0790 (1) & 0.3866 (2) & -0.0682 (9) \\ 0.1805 (1) & 0.0730 (2) & 0.0465 (9) \\ -0.0036 (1) & 0.4119 (2) & -0.1405 (1) \\ -0.0116 (2) & 0.5099 (2) & -0.2181 (1) \\ -0.1069 (2) & 0.5027 (3) & -0.2777 (1) \end{array}$

C(5) -	-0.1839 (1)	0.3089 (3	3)	-0.1838 (1)	4.64 (5)
C(6) -	-0.0875 (1)	0.3113 (2	2)	-0.1234 (1)	3.67 (4)
C(7)	0.0428(1)	0.2722 (2	2)	-0.0125 (1)	3.69 (4)
C(8)	0.1113 (2)	0.1994 (3	3)	0.0699 (1)	4.60 (5)
C(9)	0.1848(1)	0.4643 (3	3)	-0.0582 (1)	4.27 (4)
C(10)	0.2504 (1)	0.3853 (3	3)	-0.1210(1)	4.44 (4)
C(11)	0.3559 (2)	0.4747 (3	3)	-0.1172 (1)	4.52 (5)
C(12)	0.4182 (2)	0.4041 (4	4)	-0.1841 (2)	5.69 (6)
C(13)	0.5244 (2)	0.4886 (5	5)	-0.1804 (2)	7.54 (9)
O(2)	0.5539(1)	0.4411 (2	2)	-0.4166 (9)	7.42 (5)
C(14)	0.4033 (2)	0.5830 (4	4)	-0.5045 (2)	6.73 (7)
C(15)	0.4411 (2)	0.4448 (5)	-0.4396 (2)	7.45 (8)
	Table 2.	Geometric	para	meters (Å, °)	
N(1) - C(7)		1.318 (2)	C(6)-	-N(1)	1.391 (2)
N(2) - C(9)		1.466 (2)	C(7)-	-C(8)	1.495 (2)
C(1) - C(2)		1.392 (2)	C(7)-	-N(2)	1.371 (2)
C(1)-C(6)		1.395 (2)	C(8)-	-0(1)	1.418 (3)
C(1) - N(2)		1.383 (2)	C(9)-	-C(10)	1.516 (3)
C(2)—C(3)		1.373 (3)	C(10)	-C(11)	1.511 (3)
C(3)—C(4)		1.391 (3)	C(11)-	C(12)	1.512 (3)
C(4)—C(5)		1.388 (2)	C(12)	-C(13)	1.503 (4)
C(5)—C(6)		1.391 (2)			
C(6)-N(1)-	-C(7)	105.2(1)	C(1)-	-C(6)-C(5)	120.3 (2)
C(1)-N(2)-	-C(7)	106.5 (1)	C(1)-	-C(6)-N(1)	109.8 (1)
C(1)-N(2)-	C(9)	125.0(1)	C(5)-	-C(6)-N(1)	130.0 (2)
C(7)-N(2)-	-C(9)	128.4 (1)	C(8)-	-C(7)-N(2)	123.4 (1)
C(2)-C(1)-	-C(6)	122.2 (1)	C(7)-	-C(8)-O(1)	110.5 (1)
C(2)-C(1)-	—N(2)	132.1 (2)	C(9)-	-C(10)-C(11)	112.7 (2)
C(6)-C(1)-	—N(2)	105.7 (1)	C(10)		112.7 (2)
C(1)-C(2)-	-C(3)	116.5 (2)	C(11)		113.9 (2)
C(2)-C(3)-	C(4)	122.0(1)	N(1)-	-C(7)-C(8)	123.6 (2)
C(3)-C(4)-	-C(5)	121.4 (2)	N(1)-	-C(7)-N(2)	112.9 (2)
C(4)—C(5)-	C(6)	117.6 (2)	N(2)-	-C(9)-C(10)	112.3 (2)
	N(2)—C(7)—	-C(8)O(1)		-75.7 (2)	
	C(7)-N(2)-	-C(9)-C(10)		104.3 (2)	1
	N(2)-C(9)-	-C(10)-C(11)		175.0 (2)	
	C(9)-C(10)	-C(11)-C(12	2)	-176.1 (2)	1

0.4054 (3)

-0.2609(1)

5.25 (5)

Following recommendations by Taylor & Kennard (1983), the H(N) atoms were placed at 1.03 Å from the parent N atoms in the direction obtained by refinement.

C(10) - C(11) - C(12) - C(13)

-178.9 (3)

Programs used to solve structure: *MULTAN80* (Main *et al.*, 1980). Molecular drawing: *ORTEP* (Johnson, 1965). Full-matrix least-squares refinement: *SHELX90* (Sheldrick, 1990).

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: PA1179). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Aubry, A., Brembilla, A., Faivre, V. & Lochon, P. (1995). Acta Cryst. C51, 115-116.
- Faivre, V. (1993). Thesis, INPL, Nancy, France.
- Faivre, V., Brembilla, A., Roizard, D. & Lochon, P. (1991). Tetrahedron Lett. 32, 193–196.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133-138.